A virtual private network (VPN) extends a private network across a public network, such as the Internet. It enables a computer or network-enabled device to send and receive data across shared or public networks as if it were directly connected to the private network, while benefiting from the functionality, security and management policies of the private network. A VPN is created by establishing a virtual point-to-point connection through the use of dedicated connections, virtual tunneling protocols, or traffic encryption. Major implementations of VPNs include OpenVPN and IPsec.
A VPN connection across the Internet is similar to a wide area network (WAN) link between websites. From a user perspective, the extended network resources are accessed in the same way as resources available within the private network. One major limitation of traditional VPNs is that they are point-to-point, and do not tend to support or connect broadcast domains. Therefore communication, software, and networking, which are based on layer 2 and broadcast packets, such as NetBIOS used in Windows networking, may not be fully supported or work exactly as they would on a realĀ LAN. Variants on VPN, such as Virtual Private LAN Service (VPLS), and layer 2 tunneling protocols, are designed to overcome this limitation.
VPNs allow employees to securely access their company’s intranet while traveling outside the office. Similarly, VPNs securely connect geographically separated offices of an organization, creating one cohesive network. VPN technology is also used by individual Internet users to secure their wireless transactions, to circumvent geo restrictions and censorship, and to connect to proxy servers for the purpose of protecting personal identity and location.